Planar graphs without 5-cycles or without 6-cycles
نویسندگان
چکیده
منابع مشابه
The 4-choosability of planar graphs without 6-cycles
Let G be a planar graph without 6-cycles. We prove that G is 4-choosable.
متن کاملTotal coloring of planar graphs without some chordal 6-cycles
A k-total-coloring of a graph G is a coloring of vertex set and edge set using k colors such that no two adjacent or incident elements receive the same color. In this paper, we prove that if G is a planar graph with maximum ∆ ≥ 8 and every 6-cycle of G contains at most one chord or any chordal 6-cycles are not adjacent, then G has a (∆ + 1)-total-coloring.
متن کاملPlanar Graphs without Cycles of Speciic Lengths
It is easy to see that planar graphs without 3-cycles are 3-degenerate. Recently, it was proved that planar graphs without 5-cycles are also 3-degenerate. In this paper it is shown, more surprisingly, that the same holds for planar graphs without 6-cycles.
متن کاملPlanar Graphs Without Cycles of Specific Lengths
It is easy to see that planar graphs without 3-cycles are 3-degenerate. Recently, it was proved that planar graphs without 5-cycles are also 3-degenerate. In this paper it is shown, more surprisingly, that the same holds for planar graphs without 6-cycles.
متن کاملExtremal graphs without three-cycles or four-cycles
We derive bounds for f(v), the maximum number of edges in a graph on v vertices that contains neither three-cycles nor four-cycles. Also, we give the exact value of f(v) for all v up to 24 and constructive lower bounds for all v up to 200.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2009
ISSN: 0012-365X
DOI: 10.1016/j.disc.2008.07.033